久久精品日韩无码|61伊人久久绿帽|最新国产浮力网站|亚州aV无码国产|明星一二三区av|超碰人人在线成人|澳门无码福利av

品檢分幾種?

時間:2024-07-19 12:36 人氣:0 編輯:admin

一、品檢分幾種?

又稱為QC,分為IQC、PQC、FQC和OQC,每個QC檢驗產品內容、工作性質都是不一樣的。

品檢—IQC

IQC也叫來料檢驗,顧名思義就是檢驗供應商零件的。可以在供應商檢驗,也可以在供應商送貨到公司時檢驗。如果發(fā)現(xiàn)不符合品質要求,就判定零件不合格,退回供應商返工。

品檢—PQC

PQC現(xiàn)場檢驗,就是大家理解的質檢員。每天都忙碌在一線,做產品外觀檢驗,偶爾會做功能檢驗。

品檢—FQC

FQC叫巡檢,PQC檢驗注重外觀、少、漏、錯裝,F(xiàn)QC(巡檢)更注重功能。從抽樣比例隨機抽查產品,要會算比例。如果抽檢發(fā)現(xiàn)不良,就要加抽或者判返工。

品檢—OQC

OQC也叫成品檢驗,這是產品質量最后一道防線。OQC更注重產品的功能,要很懂產品及客戶標準。有具備獨立思考能力及溝通協(xié)調能力。有時候還要應對客戶,總之,OQC發(fā)展方向很廣,如質量工程師、管理職、業(yè)務、客戶代表等等。

二、IPQC品檢流程?

崗位職責:

1,根據每天生產,嚴格按照檢驗標準來檢查生產首件、巡檢產品;

2,將檢查后的首件品蓋上合格的印章,并擺放在相應的位置;

3,不合格情況出現(xiàn)時,應立即通知相關人員改善,避免造成批量性的不良品;

4,對品質不穩(wěn)定的產品要進行跟蹤、有問題時應及時匯報上級或相關人員,并找出解決方法,及時解決問題;

5,協(xié)助主管對客戶反饋、投訴進行處理,并確保倉庫庫存的不良品與良品得到有效處理;

6,負責首件的簽板確認,并保證無樣板不生產、不合格不出貨;

7,統(tǒng)籌車間品質管理工作。

8,執(zhí)行檢驗任務,依據華為、中興、各客戶不同要求的文件與檢驗指導書完成產品的巡檢、抽檢工作;

9,依自制工單、電子、BOM架構、ECN、聯(lián)絡單、軟件發(fā)放表、 Checklist《關鍵器件清單》等執(zhí)行首件、上線物料確認工作。(依不同客戶需求不同檢驗文件進行首件確認)

10,配合產線退料確認工作

11,點檢檢驗工裝設備,熟練運用檢驗工裝設備完成各項檢驗任務

12,依據相關文件《條碼信息表》對產品標簽檢驗,并進行掃描動作

13,提供物料試產不良現(xiàn)象記錄

14,受控文件的接收、分類、歸檔及回收

15,對產線6S、ESD等影響品質方面進行巡查稽核,推動產線制程改善。

16,記錄和完成相關品質報表

三、什么是品檢?

品檢是品質檢驗是根據合同和有關檢驗標準規(guī)定或申請人的要求,對商品的使用價值所變現(xiàn)出來的各種特性,運用人的感官或化學、物理等各種手段進行測試、鑒別。

其目的就是判別、確定該商品的質量是否符合合同中規(guī)定的商品質量條件。品質檢驗包括外觀品質和內在品質的檢驗。

外觀品質檢驗,指對商品外觀尺寸、造型、結構、款式、表面色彩、表面精度、軟硬度、光澤度、新鮮度、成熟度、氣味等的檢驗。

內在品質檢驗,指對商品的化學組成、性質和等級等技術指標的檢驗。

四、成品檢驗的成品檢驗的目的?

答:成品檢驗的成品檢驗的目的應該是對其成品是否過期,質量問題按照規(guī)定產品是不是合格。一般講對于某些戶品人們都是定期檢查的以防出現(xiàn)問題?,F(xiàn)在社會上存在著三無產品,質量低劣,以次充好等等問題。所以為了把好產品質量關,必須要經常定期檢查成品。

五、mahout面試題?

之前看了Mahout官方示例 20news 的調用實現(xiàn);于是想根據示例的流程實現(xiàn)其他例子。網上看到了一個關于天氣適不適合打羽毛球的例子。

訓練數(shù)據:

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

檢測數(shù)據:

sunny,hot,high,weak

結果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代碼調用Mahout的工具類實現(xiàn)分類。

基本思想:

1. 構造分類數(shù)據。

2. 使用Mahout工具類進行訓練,得到訓練模型。

3。將要檢測數(shù)據轉換成vector數(shù)據。

4. 分類器對vector數(shù)據進行分類。

接下來貼下我的代碼實現(xiàn)=》

1. 構造分類數(shù)據:

在hdfs主要創(chuàng)建一個文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數(shù)據傳到hdfs上面。

數(shù)據文件格式,如D1文件內容: Sunny Hot High Weak

2. 使用Mahout工具類進行訓練,得到訓練模型。

3。將要檢測數(shù)據轉換成vector數(shù)據。

4. 分類器對vector數(shù)據進行分類。

這三步,代碼我就一次全貼出來;主要是兩個類 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 測試代碼

*/

public static void main(String[] args) {

//將訓練數(shù)據轉換成 vector數(shù)據

makeTrainVector();

//產生訓練模型

makeModel(false);

//測試檢測數(shù)據

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//將測試數(shù)據轉換成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失敗!");

System.exit(1);

}

//將序列化文件轉換成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件轉換成向量失?。?#34;);

System.out.println(2);

}

}

public static void makeTrainVector(){

//將測試數(shù)據轉換成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失敗!");

System.exit(1);

}

//將序列化文件轉換成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件轉換成向量失??!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成訓練模型失??!");

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("檢測數(shù)據構造成vectors初始化時報錯。。。。");

System.exit(4);

}

}

/**

* 加載字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1時表示總文檔數(shù)

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用貝葉斯算法開始分類,并提取得分最好的分類label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("檢測所屬類別是:"+getCheckResult());

}

}

六、webgis面試題?

1. 請介紹一下WebGIS的概念和作用,以及在實際應用中的優(yōu)勢和挑戰(zhàn)。

WebGIS是一種基于Web技術的地理信息系統(tǒng),通過將地理數(shù)據和功能以可視化的方式呈現(xiàn)在Web瀏覽器中,實現(xiàn)地理空間數(shù)據的共享和分析。它可以用于地圖瀏覽、空間查詢、地理分析等多種應用場景。WebGIS的優(yōu)勢包括易于訪問、跨平臺、實時更新、可定制性強等,但也面臨著數(shù)據安全性、性能優(yōu)化、用戶體驗等挑戰(zhàn)。

2. 請談談您在WebGIS開發(fā)方面的經驗和技能。

我在WebGIS開發(fā)方面有豐富的經驗和技能。我熟悉常用的WebGIS開發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術進行地圖展示和交互設計,并能夠使用后端技術如Python、Java等進行地理數(shù)據處理和分析。我還具備數(shù)據庫管理和地理空間數(shù)據建模的能力,能夠設計和優(yōu)化WebGIS系統(tǒng)的架構。

3. 請描述一下您在以往項目中使用WebGIS解決的具體問題和取得的成果。

在以往的項目中,我使用WebGIS解決了許多具體問題并取得了顯著的成果。例如,在一次城市規(guī)劃項目中,我開發(fā)了一個基于WebGIS的交通流量分析系統(tǒng),幫助規(guī)劃師們評估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測項目中,我使用WebGIS技術實現(xiàn)了實時的空氣質量監(jiān)測和預警系統(tǒng),提供了準確的空氣質量數(shù)據和可視化的分析結果,幫助政府和公眾做出相應的決策。

4. 請談談您對WebGIS未來發(fā)展的看法和期望。

我認為WebGIS在未來會繼續(xù)發(fā)展壯大。隨著云計算、大數(shù)據和人工智能等技術的不斷進步,WebGIS將能夠處理更大規(guī)模的地理數(shù)據、提供更豐富的地理分析功能,并與其他領域的技術進行深度融合。我期望未來的WebGIS能夠更加智能化、個性化,為用戶提供更好的地理信息服務,助力各行各業(yè)的決策和發(fā)展。

七、freertos面試題?

這塊您需要了解下stm32等單片機的基本編程和簡單的硬件設計,最好能夠了解模電和數(shù)電相關的知識更好,還有能夠會做操作系統(tǒng),簡單的有ucos,freeRTOS等等。最好能夠使用PCB畫圖軟件以及keil4等軟件。希望對您能夠有用。

八、化妝品檢測和食品檢測哪個好?

食品檢測,對身體健康有著很好的幫助

九、paas面試題?

1.負責區(qū)域大客戶/行業(yè)客戶管理系統(tǒng)銷售拓展工作,并完成銷售流程;

2.維護關鍵客戶關系,與客戶決策者保持良好的溝通;

3.管理并帶領團隊完成完成年度銷售任務。

十、面試題類型?

你好,面試題類型有很多,以下是一些常見的類型:

1. 技術面試題:考察候選人技術能力和經驗。

2. 行為面試題:考察候選人在過去的工作或生活中的行為表現(xiàn),以預測其未來的表現(xiàn)。

3. 情境面試題:考察候選人在未知情境下的決策能力和解決問題的能力。

4. 案例面試題:考察候選人解決實際問題的能力,模擬真實工作場景。

5. 邏輯推理題:考察候選人的邏輯思維能力和分析能力。

6. 開放性面試題:考察候選人的個性、價值觀以及溝通能力。

7. 挑戰(zhàn)性面試題:考察候選人的應變能力和創(chuàng)造力,通常是一些非常具有挑戰(zhàn)性的問題。

相關資訊
熱門頻道

Copyright © 2024 招聘街 滇ICP備2024020316號-38