久久精品日韩无码|61伊人久久绿帽|最新国产浮力网站|亚州aV无码国产|明星一二三区av|超碰人人在线成人|澳门无码福利av

誠(chéng)信誠(chéng)信誠(chéng)誠(chéng)信對(duì)聯(lián)?

時(shí)間:2024-08-30 21:23 人氣:0 編輯:招聘街

一、誠(chéng)信誠(chéng)信誠(chéng)誠(chéng)信對(duì)聯(lián)?

上聯(lián):讀書(shū)益志,萬(wàn)里鵬程收眼底;

  下聯(lián):立業(yè)聘懷,千家憂樂(lè)注心頭。

  上聯(lián):誠(chéng)信善良,立品毋忘松作范;

  下聯(lián):拼搏刻苦,治學(xué)當(dāng)以竹為師。

  上聯(lián):勇為好子民,忠自國(guó)家興亡際;

  下聯(lián): 爭(zhēng)做賢兒女,孝于父母健在時(shí)。

  上聯(lián):功殊不傲,此生只把潮為鑒;

  下聯(lián):量小當(dāng)防,凡事宜將海作師。

  上聯(lián):讓三分、退一步,天高海闊;

  下聯(lián):做一事、謹(jǐn)三思,理得心安。

  上聯(lián):生財(cái)有道,致富勿離誠(chéng)信道;

  下聯(lián):立業(yè)唯心,修身須靠勤勉心。

  上聯(lián):自我榮譽(yù),有自我亦無(wú)自我;

  下聯(lián):他人困難,是他人也非他人。

二、單招面試題誠(chéng)信是一種美德談?wù)勀愕目捶ǎ?/h2>

只有做到誠(chéng)信,才能得到別人的尊重,信任。別人會(huì)把你當(dāng)知心朋友,放心的工作伙伴

三、誠(chéng)信的含義是什么?對(duì)待誠(chéng)信和不誠(chéng)信持什么態(tài)度才好?

1.誠(chéng)信,言出必行,言出必準(zhǔn)是立于天地人世的根本。

2.言必誠(chéng)信,行必忠正??鬃?/p>

3.只有誠(chéng)心,才能換來(lái)誠(chéng)信。大誠(chéng)信其實(shí)就是大智慧。

4.誠(chéng)信的人,走遍天下有朋友;虛偽的人,踏破鐵鞋無(wú)知己。

5.進(jìn)學(xué)不誠(chéng)則學(xué)雜,處事不誠(chéng)則事敗,自謀不誠(chéng)則欺心而棄己,與人不誠(chéng)則喪德而增怨。

6.誠(chéng)信比金,千金難買(mǎi)誠(chéng)與信?!髡撸豪蓡⑾?/p>

7.虛偽的真誠(chéng),比魔鬼更可怕泰戈?duì)枴?/p>

8.誠(chéng)信就是從我做起,將心比心以心換心心心相印。

9.存心光明正大,言論光明正大,行事光明正大,斯之謂君子。

10.誠(chéng)信就像人生航船的楫槳,控制著人生的去向。

四、什么是誠(chéng)信?誠(chéng)信的定義是什么?

誠(chéng)信是一個(gè)道德范疇,是日常行為的誠(chéng)實(shí)和正式交流的信用的統(tǒng)稱。泛指待人處事真誠(chéng)、老實(shí)、講信用,一諾千金等等。但一般主要是指兩個(gè)方面:一是指為人處事真誠(chéng)誠(chéng)實(shí),尊重事實(shí),實(shí)事求是;二是指信守承諾。

如果幫助到你了,請(qǐng)贊同,如果你對(duì)為人處事感興趣,可以關(guān)注我哦,謝謝。

五、關(guān)于誠(chéng)信的誠(chéng)信格言?

誠(chéng)信為本,立業(yè)之根,我誠(chéng)你信,你我同行,誠(chéng)不在,則信無(wú)存。

守信萬(wàn)里還嫌近,無(wú)信一寸步難行。

誠(chéng)信為本,操守為重,堅(jiān)持準(zhǔn)則,不違反道德底線。

六、mahout面試題?

之前看了Mahout官方示例 20news 的調(diào)用實(shí)現(xiàn);于是想根據(jù)示例的流程實(shí)現(xiàn)其他例子。網(wǎng)上看到了一個(gè)關(guān)于天氣適不適合打羽毛球的例子。

訓(xùn)練數(shù)據(jù):

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

檢測(cè)數(shù)據(jù):

sunny,hot,high,weak

結(jié)果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代碼調(diào)用Mahout的工具類實(shí)現(xiàn)分類。

基本思想:

1. 構(gòu)造分類數(shù)據(jù)。

2. 使用Mahout工具類進(jìn)行訓(xùn)練,得到訓(xùn)練模型。

3。將要檢測(cè)數(shù)據(jù)轉(zhuǎn)換成vector數(shù)據(jù)。

4. 分類器對(duì)vector數(shù)據(jù)進(jìn)行分類。

接下來(lái)貼下我的代碼實(shí)現(xiàn)=》

1. 構(gòu)造分類數(shù)據(jù):

在hdfs主要?jiǎng)?chuàng)建一個(gè)文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數(shù)據(jù)傳到hdfs上面。

數(shù)據(jù)文件格式,如D1文件內(nèi)容: Sunny Hot High Weak

2. 使用Mahout工具類進(jìn)行訓(xùn)練,得到訓(xùn)練模型。

3。將要檢測(cè)數(shù)據(jù)轉(zhuǎn)換成vector數(shù)據(jù)。

4. 分類器對(duì)vector數(shù)據(jù)進(jìn)行分類。

這三步,代碼我就一次全貼出來(lái);主要是兩個(gè)類 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 測(cè)試代碼

*/

public static void main(String[] args) {

//將訓(xùn)練數(shù)據(jù)轉(zhuǎn)換成 vector數(shù)據(jù)

makeTrainVector();

//產(chǎn)生訓(xùn)練模型

makeModel(false);

//測(cè)試檢測(cè)數(shù)據(jù)

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//將測(cè)試數(shù)據(jù)轉(zhuǎn)換成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失?。?#34;);

System.exit(1);

}

//將序列化文件轉(zhuǎn)換成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件轉(zhuǎn)換成向量失敗!");

System.out.println(2);

}

}

public static void makeTrainVector(){

//將測(cè)試數(shù)據(jù)轉(zhuǎn)換成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失??!");

System.exit(1);

}

//將序列化文件轉(zhuǎn)換成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件轉(zhuǎn)換成向量失??!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean參數(shù)是,是否遞歸刪除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成訓(xùn)練模型失?。?#34;);

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("檢測(cè)數(shù)據(jù)構(gòu)造成vectors初始化時(shí)報(bào)錯(cuò)。。。。");

System.exit(4);

}

}

/**

* 加載字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1時(shí)表示總文檔數(shù)

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用貝葉斯算法開(kāi)始分類,并提取得分最好的分類label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("檢測(cè)所屬類別是:"+getCheckResult());

}

}

七、webgis面試題?

1. 請(qǐng)介紹一下WebGIS的概念和作用,以及在實(shí)際應(yīng)用中的優(yōu)勢(shì)和挑戰(zhàn)。

WebGIS是一種基于Web技術(shù)的地理信息系統(tǒng),通過(guò)將地理數(shù)據(jù)和功能以可視化的方式呈現(xiàn)在Web瀏覽器中,實(shí)現(xiàn)地理空間數(shù)據(jù)的共享和分析。它可以用于地圖瀏覽、空間查詢、地理分析等多種應(yīng)用場(chǎng)景。WebGIS的優(yōu)勢(shì)包括易于訪問(wèn)、跨平臺(tái)、實(shí)時(shí)更新、可定制性強(qiáng)等,但也面臨著數(shù)據(jù)安全性、性能優(yōu)化、用戶體驗(yàn)等挑戰(zhàn)。

2. 請(qǐng)談?wù)勀赪ebGIS開(kāi)發(fā)方面的經(jīng)驗(yàn)和技能。

我在WebGIS開(kāi)發(fā)方面有豐富的經(jīng)驗(yàn)和技能。我熟悉常用的WebGIS開(kāi)發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術(shù)進(jìn)行地圖展示和交互設(shè)計(jì),并能夠使用后端技術(shù)如Python、Java等進(jìn)行地理數(shù)據(jù)處理和分析。我還具備數(shù)據(jù)庫(kù)管理和地理空間數(shù)據(jù)建模的能力,能夠設(shè)計(jì)和優(yōu)化WebGIS系統(tǒng)的架構(gòu)。

3. 請(qǐng)描述一下您在以往項(xiàng)目中使用WebGIS解決的具體問(wèn)題和取得的成果。

在以往的項(xiàng)目中,我使用WebGIS解決了許多具體問(wèn)題并取得了顯著的成果。例如,在一次城市規(guī)劃項(xiàng)目中,我開(kāi)發(fā)了一個(gè)基于WebGIS的交通流量分析系統(tǒng),幫助規(guī)劃師們?cè)u(píng)估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測(cè)項(xiàng)目中,我使用WebGIS技術(shù)實(shí)現(xiàn)了實(shí)時(shí)的空氣質(zhì)量監(jiān)測(cè)和預(yù)警系統(tǒng),提供了準(zhǔn)確的空氣質(zhì)量數(shù)據(jù)和可視化的分析結(jié)果,幫助政府和公眾做出相應(yīng)的決策。

4. 請(qǐng)談?wù)勀鷮?duì)WebGIS未來(lái)發(fā)展的看法和期望。

我認(rèn)為WebGIS在未來(lái)會(huì)繼續(xù)發(fā)展壯大。隨著云計(jì)算、大數(shù)據(jù)和人工智能等技術(shù)的不斷進(jìn)步,WebGIS將能夠處理更大規(guī)模的地理數(shù)據(jù)、提供更豐富的地理分析功能,并與其他領(lǐng)域的技術(shù)進(jìn)行深度融合。我期望未來(lái)的WebGIS能夠更加智能化、個(gè)性化,為用戶提供更好的地理信息服務(wù),助力各行各業(yè)的決策和發(fā)展。

八、freertos面試題?

這塊您需要了解下stm32等單片機(jī)的基本編程和簡(jiǎn)單的硬件設(shè)計(jì),最好能夠了解模電和數(shù)電相關(guān)的知識(shí)更好,還有能夠會(huì)做操作系統(tǒng),簡(jiǎn)單的有ucos,freeRTOS等等。最好能夠使用PCB畫(huà)圖軟件以及keil4等軟件。希望對(duì)您能夠有用。

九、paas面試題?

1.負(fù)責(zé)區(qū)域大客戶/行業(yè)客戶管理系統(tǒng)銷售拓展工作,并完成銷售流程;

2.維護(hù)關(guān)鍵客戶關(guān)系,與客戶決策者保持良好的溝通;

3.管理并帶領(lǐng)團(tuán)隊(duì)完成完成年度銷售任務(wù)。

十、面試題類型?

你好,面試題類型有很多,以下是一些常見(jiàn)的類型:

1. 技術(shù)面試題:考察候選人技術(shù)能力和經(jīng)驗(yàn)。

2. 行為面試題:考察候選人在過(guò)去的工作或生活中的行為表現(xiàn),以預(yù)測(cè)其未來(lái)的表現(xiàn)。

3. 情境面試題:考察候選人在未知情境下的決策能力和解決問(wèn)題的能力。

4. 案例面試題:考察候選人解決實(shí)際問(wèn)題的能力,模擬真實(shí)工作場(chǎng)景。

5. 邏輯推理題:考察候選人的邏輯思維能力和分析能力。

6. 開(kāi)放性面試題:考察候選人的個(gè)性、價(jià)值觀以及溝通能力。

7. 挑戰(zhàn)性面試題:考察候選人的應(yīng)變能力和創(chuàng)造力,通常是一些非常具有挑戰(zhàn)性的問(wèn)題。

相關(guān)資訊
熱門(mén)頻道

Copyright © 2024 招聘街 滇ICP備2024020316號(hào)-38